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Framework / Nonlinear propagation in graphene waveguides

 Strong recent interest in nonlinear propagation effects in graphene but with 
some skepticism, as well.

Hendry et al., Coherent Nonlinear Optical Response of Graphene, PRL, 2010
Gu et al., Regenerative oscillation and four-wave mixing in graphene optoelectronics, 
Nat Photonics, 2012
Gorbach, Nonlinear graphene plasmonics: Amplitude equation for surface plasmons, 
PRA, 2013
Ooi at al., Waveguide engineering of graphene’s nonlinearity, APL, 2014
Khurgin, Graphene—A rather ordinary nonlinear optical material, APL, 2014

 Various publications report high (giant?) nonlinearity levels in graphene.

 Theoretical frameworks still not well developed and lacking the 
understanding of nonlinear effects in photonics.

 Rather poor correlation between theoretical and experimental results and 
very few device-oriented experiments.

 So, is there any exploitable potential in nonlinear graphene waveguides?
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Framework / Motivation & objectives

 Current literature in nonlinear graphene waveguides include various 
simplifications and misconceptions related to:

- inappropriate effective medium representations
- inconsistent introduction of graphene tensorial properties
- superficial or excessive models for graphene’s nonlinearity
- poor waveguide engineering

 Our objectives include:

- treatment of graphene as sheet (2D material)
- full/complete tensorial representation of nonlinear surface conductivity
- rigorous calculation of nonlinear parameter γ (W-1m-1) for arbitrary 
waveguide cross-sections (Kerr response)
- quantify individual sheet and bulk nonlinear contributions in γ for a 
range of waveguide archetypes
- engineer the waveguide cross-section to enhance γ



Dept. of Electrical & Computer Engineering • Aristotle University of Thessaloniki • http://photonics.ee.auth.gr

OWTNM’2015 • 17-18 April 2015, London, United Kingdom

6

Electromagnetic Modelling

o Framework 
o Nonlinear propagation in graphene waveguides
o Motivation & objectives 

o Electromagnetic modelling
o Graphene as a conductive sheet
o Equivalent bulk medium representation
o FEM formulation considering graphene as a sheet
o Nonlinear waveguide parameters and the NLSE

o Review of graphene physical properties
o Linear conductivity
o Nonlinear conductivity

o Nonlinear parameter calculation
o Optical frequencies
o Terahertz

o To probe further



Dept. of Electrical & Computer Engineering • Aristotle University of Thessaloniki • http://photonics.ee.auth.gr

OWTNM’2015 • 17-18 April 2015, London, United Kingdom

7

Electromagnetic Modelling / Graphene as a conducting sheet
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Maxwell’s curl equations, including both linear and nonlinear contributions:
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Electromagnetic Modelling / Graphene as a conducting sheet

We focus on self-acting third-order nonlinear effects, i.e. Kerr effect and TPA:
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Surface conductivity tensor, 4th-rank (81 elements), 
units [S(m/V)2]

- Hexagonal symmetry group
- Normal to sheet component of Js,NL vanishes

j-th Cartesian of the 
nonlinear surface current

Up to 14 non-zero elements 
& up to 6 are independent!

Simplest form (8 non-zero, 1 independent), i.e. 2D-equivalent of an isotropic bulk 
(3D) medium:
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For example, a graphene sheet normal to the y-axis
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Electromagnetic Modelling / Equivalent bulk medium representation
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Equivalent bulk medium pros & cons:

o very simple approach
o allows usage of existing SW tools
o introduces an artificial thickness
o excessive computational burden
o tensorial information easily lost

Widespread choice, but commonly leads to poor or misleading results!
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Electromagnetic Modelling / FEM formulation considering graphene as a sheet
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Usual Galerkin procedure:

LHS → Standard FEM bulk term

RHS → Graphene surface term

Finite Element Method is used to analyze the linear problem. Graphene is 
rigorously introduced as sheet (zero thickness) characterized by surface
conductivity tensors.
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Electromagnetic Modelling / Nonlinear waveguide parameters and the NLSE

Nonlinear Schrodinger Equation (NLSE) framework for Kerr & TPA: extract the 
nonlinear parameter γNL (mW)-1, that quantifies nonlinear phase shift or loss.

Basic Figure of Merit NL propL (1/W)
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Electromagnetic Modelling / Nonlinear waveguide parameters and the NLSE
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We substitute in the time-domain

nonlinear equation for the SVE 

Nonlinear Schrodinger Equation
(here simply written for CW)
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Review of graphene physical properties
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Review of graphene physical properties / Linear conductivity

Re & Im part of graphene 
surface conductivity, equivalent 

εr and equivalent (linear) 
refractive index n0 at 1550 nm. 
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Review of graphene physical properties / Nonlinear conductivity

Nonlinear graphene surface conductivity: a topic of much debate!

Source Non-zero Independent 
Hexagonal 2D crystal 8+6 3+3 

Gorbach et al., OL, 2013 8+6 1+1 
Cheng et al., New J. Phys, 2014 8 2 

Simplest model 8 1 
 

(3)
sNumber of elements in graphene’s nonlinear surface conductivity tensor 
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Simplest possible form 
of 4th-rank tensor :
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Hendry et al., PRL, 2010

Mikhailov & Ziegler,
J. Phys.: Condens. Matter, 2008
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Review of graphene physical properties / Nonlinear conductivity

Absolute value of Re{n2,eq}. 
Solid (positive),

Dashed (negative). 

Equivalent nonlinear index n2 undergoes sign transitions at      

Index n2 can be in the range of 10-15 m2/W. For comparison, Si ~2.5×10-18

m2/W, Chalcogenides ~10-17 m2/W, polymers (DDMEBT) ~1.7×10-17 m2/W.

However, without the right waveguide engineering, this high value does not 
translate into a high γNL parameter.

0,eq 0,eqRe{ } Im{ }n n
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Nonlinear parameter calculation
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Nonlinear parameter calculation / Optical frequencies

 We will assess how the presence of a graphene layer affects the 
nonlinearity of “standard” photonic and plasmonic waveguides. 

Here shown simple/trivial 
layouts of graphene, but 

our formulation allows for:

- Inhomogeneous σ1 & σ3
- arbitrary orientations 
(curved, etc.)
- multiple sheets
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Nonlinear parameter calculation / Optical frequencies

Silicon wire overlaid with graphene 

0.5 eVc 

• Graphene nonlinearity is much lower compared to that of bulk Si.
• Marginal interaction of w/g mode with graphene.
• Counterintuitively, γgr is larger for TM modes, partially due to Ez!
• Losses are too high (they reduce from ~1 dB/cm to ~5 dB/mm).

2 2
x ze e

Insets:
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Nonlinear parameter calculation / Optical frequencies

Can we enhance graphene’s contribution in the Si-wire waveguide? 

• Graphene sheet artificially offset through the Si-core.
• Sheet nonlinearity is now comparable to that of bulk Si (~110 W-1m-1).
• May not be easy to fabricate.
• Still higher losses.
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Nonlinear parameter calculation / Optical frequencies

0.5 eVc 

• TE polarization ensures strong 
interaction. High field confinement.

• γsheet orders of magnitude above Si. 
• γsheet improves by reducing thickness.
• For small gaps metal & graphene 

equally contribute to losses.

0.5 eVc 

Plasmonic waveguides: metal stripe & MIM slot

• We exploit the y-antisymmetric mode 
and not the symmetric “long-range”.

• γsheet exceeds Si contribution.
• γsheet improves by reducing thickness.
• Metal loss dominates.

mode at “o” 
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Nonlinear parameter calculation / Terahertz

THz: Graphene Nano-Ribbon (GNR)

• Nonlinear parameter γNL is excessive.
• The “edge” plasmonic mode provides highly confined field components.
• Propagation length ~10λ at 10 THz.
• Ample tuning via chemical potential (gating), as σ3 depends on μc.

gr 1 mw  
Higher order 

mode
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To probe further

 Current work:

- rigorous derivation of the nonlinear parameter γ
- full tensorial properties retained
- MIM slots overlaid with graphene lead to ultra-high γ at tolerable losses
- higher nonlinearity is always associated with increasing losses
- more promising results provided by graphene nano-ribbons at THz

 Future work:

- better understanding of the most appropriate surface conductivity model
- include more nonlinear effects: 

- Two Photon Absorption (trivial)
- Carrier Effects, FCD & FCA
- Four Wave Mixing 

- more complex graphene layouts (bilayers, etc.) or biasing conditions
- more efficient waveguide engineering
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